Foundations of Query Languages

Dr. Fang Wei

Lehrstuhl für Datenbanken und Informationssysteme Universität Freiburg

SS 2011

A legitimate question

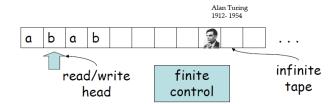
Given a query Q in RA, is there at all adatabase D such that $Q(D) \neq \emptyset$?

- If there is no such database, then the query *Q* makes no sense and we can directly replace it by the empty result.
- Could save much runtime. Also in the case of subquerie

Today we will show from first principles that this problem is undecidable.

Turing Machine

General model of computation: Turing Machine



Turing Machine

Turing Machine:

$$(Q, \Sigma, \Gamma, \sigma, q_{start}, q_{accept}, q_{reject})$$

Q: set of states $(q_{start}, q_1, ..., q_n, q_{accept}, q_{reject})$

 Σ : input alphabet ($\{0,1\}$ suffices)

 Γ : tape alphabet ($\Sigma \subseteq \Gamma$), e.g. $\{0, 1\#, t\}$

 $\sigma: Q \times \Gamma \to Q \times \Gamma \times \{L, R, -\}$ transition function

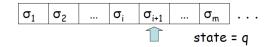
 $q_{start} \in Q$: start state

 $q_{accept} \in Q$: accept state (could also be a state set)

 $q_{reject} \in Q$: reject state (could also be a state set)

TM Configurations

Useful convention: Turing Machine configurations.



Any point in computation represented by string:

$$C = \sigma_1 \ \sigma_2 \ \dots \ \sigma_i \ q \ \sigma_{i+1} \ \sigma_{i+1} \dots \sigma_m$$

start configuration for single-tape TM on input x:

$$q_{start} x_1 x_2 \dots x_n$$

Turing Machine

Three notions of computation with Turing machines. In all, input \boldsymbol{x} written on tape

- function computation: output f(x) is left on the tape when TM halts
- language decision: TM halts in state q_{accept} if $x \in L$; TM halts in state q_{reject} if $x \notin L$.
- language acceptance: TM halts in state q_{accept} if $x \in L$; may loop forever otherwise.

Turing Machine Example

q	σ	δ (q, σ)
start	0	(start, 0, R)
start	1	(start, 1, R)
start	⊔	(t, \sqcup, L)
start	#	(start, #, R)

q	σ	δ(q, σ)
t	0	(accept, 1, -)
t	1	(t, 0, L)
t	#	(accept, #, R)

# 0 1	start
# 0 1	start
# 0 1	start
# 0 1	start
# 0 1	t
# 0 0	t
# 1 0	accep

pt

18. Juni 2011 Seite 7 Dr. Fang Wei

Extended Church Turing Thesis

Consequence of extended Church-Turing Thesis: all reasonable physically realizable models of computation can be efficiently simulated by a TM

- e.g. multi-tape vs. single tape TM
- e.g. RAM model

Turing Machine

There exist (natural) undecidable problems

$$HALT = \{(M, x) : Mhaltsoninputx\}$$

Theorem

HALT is undecidable, even for single-tape TMs.

Undecidability of Halting

Suppose that TM H(M,x) decides whether M(x) halts.

- Define new TM H' on input M: H'(M)
 - if H(M, M) accepts, then H'(M) loops
 - if H(M, M) rejects, then H'(M) halts
- Consider H' on input H' : H'(H')
 - if H'(H') halts, then H(H', H') rejects, which means H'(H') loops
 - if H'(H') loops, then H(H', H') accepts, which means H'(H') halts, contradiction.

Trakhtenbrot's Theorem

Trakhtenbrot's Theorem

For every relational vocabulary σ with at least one binary relation symbol, it is undecidable whether an FO sentence ϕ over σ is finitely satisfiable.

- Boris A. Trakhtenbrot: *1921 Brichevo, Belarus; now at Tel Aviv University.

This theorem does the job. Translated into database terminology, it reads:

Undecidability of FO Queries

For a database schema σ with at least one binary relation, it is undecidable, whether a Boolean FO or RA query Q over σ is satisfied by at least one database.

Proof Idea:

- \blacksquare Define a relational signature σ suitable for encoding finite computations of a TM
- For each specific TM M and input I, transform M into an FO formula $\phi_{M,I}$ such that for each structure (i.e., database) D over σ , we have $D \models \phi_{M,I}$ iff M with input I halts.

$$(Q, \Sigma, \Gamma, \sigma, q_{start}, q_{accept}, q_{reject})$$

Simplifying assumptions:

- $f \sigma$ may have several unary and binary relations. (We could always encode them into a single binary relation! ightarrow exercise)
- Tape alphabet of $M: \Gamma = \Sigma = \{0,1\}$. (Can always be obtained by simple coding tricks, e.g.: $0 \rightarrow 10$; $1 \rightarrow 01$; $\# \rightarrow 11$; $\# \rightarrow 10$)

Further assumptions:

- The head never moves to the left of the first cell.
- The machine halts iff it enters state q_{accept} or state q_{reject} and it halts only in these states.
- \rightarrow These two conditions can be enforced by easy modifications of M that preserve 'halting?equivalence'.

$$TM: (Q, \Sigma, \Gamma, \sigma, q_{start}, q_{accept}, q_{reject})$$

Relational signature (database schema):

$$\sigma = \{ \langle, Min(.), T_0(.,.), T_1(.,.), H(.,.), S(.,.) \}$$

With the following intended meaning:

- \blacksquare < is a linear order, as usual, we write x < y instead of < (x, y).
- The elements of this linear order will be used to simulate both time instants and tape position (=cell numbers).
- Min(x) is true for the smallest element of < only.
- T_0 and T_1 are tape predicates: $T_0(p, t)$ indicates that cell number p at time t contains $0, \ldots$
- H(p, t) indicates that the head at time t is at position p(i.e., at cell number <math>p)
- ullet S(s,t) indicates that at instant t the machine is in state s.

Seite 15

Dr. Fang Wei 18. Juni 2011

 $\phi_{M,I}$ is the conjunction of the following sentences:

A sentence stating that < is a linear order and that *Min* contains its minimal element. This has in turn the following conjuncts:

$$\forall x, y (x \neq y \rightarrow (x < y \lor y < x))$$

$$\forall x, y \neg (x < y \land y < x)$$

$$\forall x, y, z (x < y \land y < z \rightarrow x < z)$$

$$\forall x, y (Min(x) \rightarrow (x = y \lor x < y))$$

 $totality \\ antisymmetry + antireflexivity \\ transitivity$

A remaining large sentence:

$$\exists s_0, s_1, \ldots, s_k \ (\phi_{states} \land \phi_{rest})$$

where s_i is a variable representing state i of TM (we assume the TM has k+1 states), and

$$\phi_{states} \equiv \bigwedge_{i \neq j} s_i \neq s_j$$

where ϕ_{rest} further describes the machine behavior as follows.

 ϕ_{rest} contains the following conjuncts:

initial configuration

A formula defining the initial configuration of M with I on its input tape which in turn contains the following conjuncts: Assuming the input string I has length n. Denote its i-th bit by b_i . Then for each input position $0 \le i < n$ (we start at 0):

$$\forall p, t \ ((Min(t) \land [p=i]) \rightarrow T_{b_i}(p,t))$$

where [p = i] is an abbreviation for a FO formula stating that p is the i-th element of i

 \rightarrow This describes that at instant 0 the tape contains the input string 1.

initial configuration (cont.)

$$\forall p, t \ (([p \geq n] \land \mathit{Min}(t)) \rightarrow T_0(p, t))$$

 \rightarrow all other cells contain 0 at time 0.

$$\forall t \; (Min(t) \rightarrow H(t,t))$$

 \rightarrow the head is initially at the start position 0.

$$\forall t(Min(t) \rightarrow S(s_0, t))$$

 \rightarrow the machine is initially in state 0.

state formula

in every configuration, each cell of the tape contains exactly one symbol

$$\forall p, t \ ((T_0(p,t) \lor T_1(p,t)) \land (T_0(p,t) \not\equiv T_1(p,t)))$$

state formula (2)

at any time the machine is in exactly one state

$$\forall t ((\bigvee_{1 \leq i \leq k} S(s_i, t)) \land \bigwedge_{i \neq j} \neg (S(s_i, t) \land S(s_j, t)))$$

state formula (3)

at any time the head is at exactly one position (\rightarrow exercise)

(ロ) (部) (注) (注) 注 り(()

state transition

In particular, for each transition tuple of the transition relation σ one formula. For instance, if a transition specifies that when the machine is in state 4 and reads 0 it writes 1, moves to the right and switches to state 6, we will express this as:

$$\forall p, t \ ((H(p,t) \land T_0(p,t) \land S(s_4,t)) \rightarrow \exists p', t'(p'=p+1 \land t'=t+1 \land H(p',t') \land S(s_6,t') \land T_1(p,t') \land \forall r \neq p(T_0(r,t') \equiv T_0(r,t)))$$

halting condition

We must say that M halts on input I: assume $q_{accept} = a$ and $q_{reject} = b$.

$$\exists t \ (S(s_a,t) \lor S(s_b,t))$$

This completes the description of $\phi_{M,I}$. This formula faithfully describes M on Input I, thus M halts on input I if there exists a database D: $D \models \phi_{M,I}$. QED

Further undecidability results

The following problems are undecidable:

- Safety of a FO query (i.e., domain independence).
- Equivalence of two FO (or RA) queries
- Query containment $Q_1 \subseteq Q_2$. (Recall that this means: $\forall DQ_1(D) \subseteq Q_2(D)$.

Corollary to Trakhtenbrot's Theorem

For a database schema σ with at least one binary relation, it is undecidable, whether an SQL query Q over σ will produce a non-empty result on at least one database

Thus, there is no algorithm for perfect SQL optimization.